EFFECTS OF THE STIMULATION OF THE ERGONOMIC PROPRIOCEPTIVE RESONANCE STRUCTURE KEOPE GPR ON THE ELECTROENCEPHALOGRAPHY TRACE.

Authors:
Prof. Giacomo Rizzolatti
Full Professor of Human Physiology
Department of Neurosciences
Università degli studi di Parma

Dott. Ing. Pietro Avanzini
Department of Neurosciences
Università degli Studi di Parma

Dott.ssa Maddalena Fabbri Destro
Department of Neurosciences
Università degli Studi di Parma

The aim of the study was to determine how the proprioceptive and auditory stimulation delivered by Keope GPR, could modulate the cortical rhythms typically recorded during the rest condition (assessable through electroencephalography EEG) in 12 adults.

Conclusions: the rhythm MU (µ) which indicates the presence of the motor relaxation of the subject, significantly increases after a session with Keope (program 1).
VARIATIONS OF LACTATE AFTER PROPRIOCEPTIVE INDUCTION WITH KEOPE

Scientific study (in course of publication, 2015)

Speakers:
Dott Gigliotti Paola Virginia - Medical Surgeon
Prof. Francesco Coscia - Medical Surgeon Specialist in Internal Medicine, Specialist in Sports Medicine, International Master in Mountain Medicine

Abstract

The purpose of this study was to demonstrate the influence of ergonomic structure using proprioceptive resonance, Keope GPR, in post vigorous exercise recovery, through monitoring blood lactate. The study is carried out with elite national and international athletes.

Conclusioni: The study shows that values of lactate passed, on average, from a value at rest of 2.4 mml/l to the peak value of 14.5 mml/l and from this value, after 13 minutes without Keope, the decrease is -3.31%, while with 13 minutes of Keope session (PGR 4) the decrease is -84.89%: lactate decreases with an almost complete recovery compared to the starting value.
EVALUATION OF KEOPE’S EFFICIENCY WITH RECOVERY PHYSICAL PERFORMANCE POST RIGOROUS EXERCISE

Scientific study

The scope of this study was to evaluate the use of the ergonomic structure using multi focal vibrations (Keope GPR) in the interval between two high intensity intermittent activities to reduce the deterioration of performance in the second activity. The tests were conducted at the Laboratory of Physiology of Exercise at the Institute of Bioimagery and Molecular Physiology of the National Research Council.

Conclusions: In conclusion, the present study demonstrates that vibrations applied in a single session after high intensity, intermittent effort (Repeated Sprint Cycle), ease the sense of muscle tiredness, in comparison to the passive recovery of the control group, and promote the removal of lactic acid from the blood. Thus acutely improving muscle’s capacity to return to strength.
EFFECTS OF MULTI FOCAL VIBRATION OF GLOBAL PROPRIOCEPTIVE RESONANCE ON THE STOMATOGNATHIC NEURO MUSCULAR AND POSTURAL SYSTEMS

Scientific publication (April 2015)

Authors: G. Farronato, U. Garagiola, A. Maffei, P. Cressoni, R. Soido, G. Sesso, L. Terzi

The purpose of this study was to investigate the effects of an ergonomic structure using multi focal vibration (MFV) on neuro muscular and postural systems in healthy subjects. 30 volunteers underwent both electromyography (EMG) and stabilometry before being subjected to global proprioceptive MFV resonance and, immediately after it.

Conclusions: The effects of MFV on the superficial EMG of masseter and temporalis muscles showed a statistically significant change in masseter muscles (p<0.05). Similar effects were recorded by postural and stabilometric tests (p<0.05).

In regard to the effects on the postural system investigated using stabilometry, a significant improvement in balance and re-establishment of the body’s centre of gravity was recorded.
KEOPE: ERGONOMIC PROPRIOCETIVE RESONANCE STRUCTURE

Article published on the European Journal of Sports Medicine

Authors: F. Coscia, P.V. Gigliotti, A. Bigi, A. Maffei, R. Sartore

The aim of this study was to demonstrate the influence of the ergonomic proprioceptive resonance structure, Keope GPR, on the system proprioceptor-nerve-muscle, muscular repolarization, recovery time of professional athletes (climbing).

Conclusions: the data demonstrated the muscular repolarization during Keope stimulation and till the next climbing. The values of the basic muscular tone had a statistically significant variation (p<0.05; 0.028). The posture during climbing was more uniform after Keope stimulation.
MODIFICATIONS IN PHYSIOLOGICAL ACTIVITY DURING AND AFTER KEOPE GPR THERAPY

Scientific study

The aim of the study was to demonstrate the influence of the ergonomic proprioceptive resonance structure, Keope GPR, on the system proprioceptor-nerve-muscle in four professional athletes of the Italian national team of Paraclimbing and to investigate how Keope can help the athlete in post-performance recovery and in repolarisation of fibres.

Conclusions: The study showed that the effect of vasomotor stimulation of Keope increases the oxygen supply helping muscle recovery.

The action of Keope stimulates the proprioceptors and exteroceptors that control balance and posture improving coordination.

The examined parameters, muscular repolarization, cardiopulmonary work, mechanical load, posture, column flexibility are positively affected by Keope stimulation.

The ergonomic proprioceptive resonance stimulation repolarizes the muscles, that become more relaxed, more elastic and consequently ready for the next exercise.

This induces the decrease of objective and subjective fatigue and recovery time.
NEW FRONTIERS WITH KEOPE GPR: ERGONOMIC STRUCTURE FOR PROPRIOCEPTIVE RESONANCE

Article published in a scientific journal (June 2013)
http://www.dental-tribune.com/articles/specialities/general_dentistry/13497_nuove_frontiere_con_keope_gpr_struttura_ergonomica_a_risonanza_propriocettiva_.html

Authors: A. Maffei, C. Batia, N. Cenzato, L. Solidoro, P. Pereira, G. Farronato

The study involved 21 ski teacher, aged between 20 and 32 years old, who would have had a very demanding working day (7 hours of lessons). The object of this study was to test and document the connection between the response in the neuromuscular system and the use of an ergonomic structure of global proprioceptive stimulation that causes a muscular and psychophysical repolarisation.

Conclusions: The analysed results show a general improvement in all the indices tested (Electromyography). Research has demonstrated how mechanical modulation of Keope GPR can convey a strong stimulus to the whole organism, especially to the neuromuscular and skeletal systems. Keope GPR offers an optimum aid for people involved in sports performance, whether in the preparation of the skeletal muscle structure for performance, or for post exercise recovery, through a fast, global repolarisation of fibres.
Chapter entitled “Ripolarizzazione scheletro muscolare: Keope MFV” (“Skeletal muscular repolarization: Keope MFV”) of the university text “ORTOGNATODONZIA CLINICA” (“MEDICAL ORTHODONTICS”) of G. Farronato.

Author: A. Maffei

Edizioni Ermes, Milano 2013

The chapter analyzes the responses to Keope stimulation in cases of imbalances of the temporo-mandibular joint and in cases of alterations of the psychofisical integrity. The synergy of the three values of Keope stimulation (frequency, width of oscillation and rate of acceleration) is capable of inducing beneficial effects on the body and on the psyche itself.

According to the study conducted by the School of Specialism in Orthodonty of the Università degli Studi di Milano, around 80% of subjects referred to positive sensations and feelings of psycho-physical well-being, and the impossibility to perceive the usual feeling of muscle tiredness.
EFFECTS OF GLOBAL PROPRIOCEPTIVE RESONANCE KEOPE GPR USING MULTI-FOCAL VIBRATIONS ON THE NEUROMUSCULAR STOMATOGNATHIC SYSTEM AND ON THE POSTURAL SYSTEM

Scientific study published on 21 March 2013
Authors:
Giampietro Farronato: Ordinary Professor
Amedeo Maffei: Professor on contract
Umberto Garagiola: Universitary Researcher

The purpose of this study was to investigate the effects of an ergonomic structure Keope GPR on muscle performance and body balance in 30 healthy subjects.

Conclusions: The effects of Keope GPR on the surface EMG of masseters and anterior temporalis muscles induced statistically significant change in masseters muscles (p<0.05). There were effects in body balance tests, too (p<0.05): optimum load distribution and ideal localization of the centre of gravity.
GLOBAL PROPRIOCEPTIVE RESONANCE: LONG TERM RESULTS ON POSTURAL SYSTEMS

Speakers: P. Cressoni, G. Sesso, U. Garagiola

The purpose of this study was to investigate the effects of the ergonomic structure Keope MFV on muscle performance and body balance in healthy subjects.

Conclusions: The effects of Keope GPR on the surface EMG of masseters and anterior temporalis muscles induced statistically significant change in masseters muscles (p<0.05). There were effects in body balance tests, too (p<0.05): optimum load distribution and ideal localization of the centre of gravity.

GLOBAL PROPRIOCEPTIVE RESONANCE: LONG TERM RESULTS ON NEUROMUSCULAR SYSTEMS

Speakers: P. Cressoni, L. Terzi, U. Garagiola

The purpose of this study was to investigate the effects of the ergonomic structure Keope MFV on the muscular activity of the stomatognatic system, in 15 healthy subjects.

Conclusions: The results showed significant changes in the neuromuscular activity post MFV, in each test (K6-Myotronics EMG-EKG).
GLOBAL PROPRIOCETIVE RESONANCE: EFFECTS ON NEUROMUSCOLAR AND POSTURAL SYSTEMS

Speakers: U. Garagiola, A. Maffei, G. Farronato

The purpose of the study was to investigate the effects of global proprioceptive resonance (GPR) on muscle performance and body balance in healthy subjects.

Conclusions: The effects of Keope GPR on the surface EMG of masseters and anterior temporalis muscles induced statistically significant change in masseters muscles (p<0.05). There were effects in body balance tests, too (p<0.05): optimum load distribution and ideal localization of the centre of gravity.
GLOBAL PROPRIOCEPTIVE RESONANCE: THE EFFECTS ON THE NEUROMUSCULAR SYSTEM

Scientific study
Relatori: U. Garagiola, P. Cressoni, R. Cornalba, G. Sesso, L. Terzi

The scope of this study is to evaluate the GPR on the muscular performance in healthy subjects, and to investigate a correlation between the neuromuscular system and the neuromuscular relaxation induced by Keope GPR.

Conclusions: the results showed a significant improvement in neuromuscular activity. The effects of the GPR on the EMG induced significant changes in masseter muscles.

GLOBAL PROPRIOCEPTIVE RESONANCE: THE EFFECTS ON THE POSTURAL SYSTEM

Scientific study
Relatori: U. Garagiola, P. Cressoni, F. Alessandri, R. Biagi, G. Batia

The scope of this study is to evaluate the effects of the GPR on the postural balance and on the redistribution of weight on the soles of the feet, in healthy subjects.

Conclusions: The results show an improvement in weight distribution and in the position of the centre of gravity relative to the ideal. There were statistically significant effects in the test of postural balance (p<0,05).
EFFECTS OF GLOBAL PROPRIOCEPTIVE RESONANCE KEOPE ON NEUROMUSCULAR AND POSTURAL SYSTEMS

Scientific study

Speakers: U. Garagiola, P. Cressoni, R. Soldo

The purpose of the study was to investigate the effects of global proprioceptive resonance (GPR) on muscle performance and body balance in healthy subjects.

A group of thirty volunteers underwent electromyography (EMG) and stabilometry, before and after treatment with MFV.

Conclusions: The effects of Keope GPR on the surface EMG of masseters and anterior temporalis muscles induced statistically significant change in masseters muscles (p<0.05). There were effects in body balance tests, too (p<0.05): optimum load distribution and ideal localization of the centre of gravity.
CORRELATION BETWEEN POSTURE AND TREATMENT WITH AN ERGONOMIC STRUCTURE

The purpose of this study was to evaluate, through stabilometric platform, any changes in the postural balance, in 14 adult subjects who underwent Keope session.

Conclusioni: By analysing the results obtained from the stabilometric test using specialised software pre and post Keope, it can be seen how the psycho-physical relaxation induced by the ergonomic structure, brings about an improvement in the patient’s posture, both in terms of load and in terms of position of the centre of gravity with respect to the ideal.

CORRELATION BETWEEN ELECTROMYOGRAPHIC, ELECTROGNATHOGRAPHIC ACTIVITY AND TREATMENT WITH AN ERGONOMIC STRUCTURE

The scope of this study is to verify and document if a correlation exists between the neuromuscular system (electromyografic and electrognathographic activity) and the use of Keope GPR.

Conclusioni: The greater part of subjects analysed noted a clear improvement of neuromuscular activity of the masseter and anterior temporal muscles. The mandibular kinesiology movements (opening, closure, protrusion, and laterality) became more fluid after Keope session. In some cases of subjects with an imbalance, a rebalancing of the left and right sides of the face was noted.